Expertise
silicon photonics, integrated optics, lasers, photonic materials, optical communications, sensors, microphotonic systems
Research Clusters
Current status
-
Accepting graduate students
-
Associate Professor and Director, Centre for Emerging Device Technologies
Engineering Physics
Overview
Currently Accepting Graduate Students
Research Interests:
As the information age progresses, we see ever increasing demands on our communications and computing technology, including decreasing size, maximizing bandwidth, reducing energy consumption, enhancing connectivity, and improving security. Advances in microphotonic systems, in particular those integrated on silicon, are allowing us to meet these rising demands. By integrating micro/nanophotonic devices on silicon, we can leverage the existing multi-billion dollar infrastructure of the semiconductor electronics industry and fabricate high-speed photonic devices with electronic devices on the same chip. Besides critical cost-effective and energy-efficient high-speed links in data centres, innovations in silicon photonics are driving many next-generation technologies, including advanced imaging systems, displays, remote sensors, and biosensors, to name a few. However, despite enormous research and development efforts and early-stage commercialization of silicon photonics technology over the last decade, silicon still has several major limitations as a photonic material. Significant challenges include its poor light emission properties, visible light absorption and strong two-photon absorption, inhibiting nonlinear ultrafast devices. To provide these and other functionalities missing in silicon, novel photonic materials and nanoscale devices that can be easily integrated within a silicon platform are vital.
Our group’s research focuses on new Si-based active photonic materials, nanostructures, and devices which will be implemented in emerging silicon photonic systems. We study novel active thin films (e.g. rare-earth-doped glasses) and photonic structures that allow us to manipulate and emit light using low-cost and potentially large-scale integration methods. Specific devices of interest include ultra-low-threshold microlasers, nonlinear and ultrafast devices and compact sensors. Our research is highly multi-disciplinary, collaborative and carried out at the crossroads of experimental quantum and optical physics, materials science, biomedical engineering and electrical engineering. We ultimately aim to achieve efficient and highly compact photonic systems for a variety of applications, from the life sciences to high-speed communications.
For more information please visit: http://www.bradleyresearchgroup.ca
Did you know?
Dr. Bradley is the Barber-Gennum Chair in Information Technology.
Dr. Jonathan Bradley is an Assistant Professor in the Department of Engineering Physics at McMaster University. He received his B.Eng. and M.A.Sc. degrees in Engineering Physics from McMaster University (2003 and 2005) and his Ph.D. degree in Electrical Engineering from the University of Twente (2009). In addition to postdoctoral and research scientist appointments at Harvard University (2010-12) and the Massachusetts Institute of Technology (2012-13, 2014-15), he taught undergraduate physics and photonics as an assistant professor at Wilfrid Laurier University in Canada (2013-14). He currently holds the McMaster University Barber–Gennum Chair in Information Technology. His research interests include integrated optics, on-chip amplifiers and lasers, microresonator devices, nonlinear nanophotonics, and silicon photonic microsystems. Dr. Bradley has contributed to more than 100 journal and conference papers in the field of photonics.
Recent
P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, 2017, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” Journal of Non-Crystalline Solids 476, 95–99 (2017).
J. W. Miller, Z. Khatami, J. Wojcik, J. D. B. Bradley, and P. Mascher, “Integrated ECR-PECVD and magnetron sputtering system for rare-earth-doped Si-based materials,” Surface and Coatings Technology, in press, available online 26 August 2017.
Purnawirman, N. Li, G. Singh, E. S. Magden, Z. Su, N. Sing, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+distributed feedback lasers,” IEEE Photonics Journal 9(4), 1504708 (2017).
E. S. Magden, N. Li, Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Optics Express 25(15), 18058–18065 (2017).
Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. Shah Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength insensitive waveguide design on a wafer-scale silicon nitride platform,” Optics Express 25(12), 13705–13713 (2017).
Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Optics Letters 42(9), 1772–1775 (2017).
N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform” Applied Physics Letters 110(21), 21105 (2017).
N. Li, Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Optics Letters 42(6), 1181-1184 (2017).
Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Optics Letters 41(24), 5708–5711 (2016).
G. Singh, Purnawirman, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Optics Letters 41(6), 1189–1192 (2016).
C. C. Evans, K. Shtyrkova, O. Reshef, M. Moebius, J. D. B. Bradley, S. Griesse-Nascimento, E. Ippen, and E. Mazur, “Multimode phase-matched third-harmonic generation in sub-micrometer-wide anatase TiO2 waveguides,” Optics Express 23(6), 7832–7841 (2015).
E. Shah Hosseini, Purnawirman, J. Sun, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “CMOS compatible 75 mW erbium-doped distributed feedback laser,” Optics Letters 39(11), 3106–3109 (2014).
J. D. B. Bradley, E. Shah Hosseini, Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Optics Express 22(10), 12226–12237 (2014).
D. Coolbaugh, T. N. Adam, G. L. Leake, P. Nguyen, M. L. Pautler, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “Integrated silicon photonics fabrication on a 300mm platform,” Chip Scale Review 17(3), 20–23 (2013).
J. Sun, Purnawirman, E. Shah Hosseini, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process,” Optics Letters 38(20), 4002–4004 (2013).
C. C. Evans, K. Shtyrkova, J. D. B. Bradley, O. Reshef, E. Ippen, and E. Mazur, “Spectral broadening in anatase titanium dioxide waveguides at telecommunications and near-visible wavelengths,” Optics Express 21(15), 18582–18591 (2013).
Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Optics Letters 38(11), 1760–1762 (2013).
J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Optics Express 20(21), 23821–23831 (2012).
J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. Burgess, C. C. Evans, E. Mazur and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Optics Letters 37(4), 539–541 (2012).
C. C. Evans, J. D. B. Bradley, E. A. Martí-Panameño, and E. Mazur, “Mixed two- and three-photon absorption in bluk rutile (TiO2) around 800 nm,” Optics Express 20(3), 3118–3128 (2012).
J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser & Photonics Reviews 5(3), 368–403 (2011).
L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Optics Express 18(26), 27703– 27711 (2010).
J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technology Letters 22(5), 278–280 (2010).
J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” Journal of the Optical Society of America B 27(2), 187–196 (2010).
J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Optics Letters 35(1), 73–75 (2010).
J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Optics Express 17(24), 22201–22208 (2009).
H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Optics Letters 34(18), 2718–2720 (2009).
K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE Journal of Quantum Electronics 45(5), 454–461 (2009).
A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd,Lu)2O3 channel waveguide laser,” Optics Express 17(6), 4412–4418 (2009).
A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd, Lu)2O3 waveguides for active integrated optical devices,” Journal of the Optical Society of America B 25(11), 1850–1853 (2008).
J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Applied Physics B 89(2-3), 311–318 (2007).
A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” Journal of Vacuum Science & Technology A 24(3), 783–786 (2006).
J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “A silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550nm,” Applied Physics Letters 86(24), 241103 (2005).