

COURSE OUTLINE

1. COURSE INFORMATION

Course Name: IoT Devices and Networks

Course Code: SMRTTECH 4ID3

Session Offered: Term 2, Winter semester

Calendar Description: This course teaches how the Internet of Things IoT works. Students learn about IoT networks and how things connect to networks, including whether the connection and processing is local (fog computing), is on the network edge (edge computing), or is remote (cloud computing). In addition, students learn IoT data networks, connection types, layer models and IoT network protocols and standards.

Format: Lecture (3 hours / week) + Laboratory (3 hours / week)

Instructor(s): Salman Bawa		Email: bawask@mcmaster.ca		Office Hours/Location: MS Teams In- person with appointment		
IA: Adam Sokacz TA: Harshil Rana		E-mail: sokacza@mcmaster.ca E-mail: ranah18@mcmaster.ca				
Class Schedule	Day(s):	Mondays Thursdays	Time:	11:30 am – 01:30 pm 09:30 am – 10:30 am	Location:	PGCLL M24 MDCL 1009
Lab Schedule	Day(s):	Wednesdays Thursdays Fridays	Time:	05:30 pm – 08:30 pm 02:30 pm – 05:30 pm 03:30 pm – 06:30 pm	Location:	ETB 537 ETB 537 ETB 537

1a. COURSE OBJECTIVES

The course teaches engineering technology students to appreciate and learn:

- Internet of Things as applied in both industry and government, and across various applications, including but not limited to health care, city infrastructure, agriculture, manufacturing and standard of living,
- Contemporary challenges that impact our society, and attempt to address these challenges from the lens of Internet of Things via a course project,
- IoT Devices, including sensors, actuators, and smart objects, and their networks and communication protocols,
- IoT Network architecture and design, including comparing IoT architectures and hierarchy,
- Communications criteria for connecting IoT devices, including several access technologies, including M2M,
- LPWAN, WiFi, Bluetooth, ZigBee, Z-Wave, SigFox, LoRaWan, and NB-IoT,
- Internet Protocol (IP) as IOT Network Layer, including the need for optimization,
- Application Protocols for the IOT Transport Layer, including MQTT, CoAP, AMQP, DDS, HTTP, and WebSocket, and

- Connecting the dots via overview of devices, networks, and protocols.

1b. 2023 CLASS LOCATION

As above in the "Course Information" section.

MS Teams / Zoom may be used on certain occasions; students will be notified.

Students are responsible to continually check Avenue to Learn and associated MS Teams for notifications, announcements, assignments, feedback, grading, etc.

2. SCHEDULE		
WEEK 1 Week of Mon. 08 Jan.	Inspirational video and discussion on IoT applications focused on benefits to society: healthcare, smart cities, agriculture, manufacturing, standard of living IoT Challenges: introduction to course project, sources of challenges, examples of challenges Explanation of course outline What to expect: IQ (technical knowledge) vs EQ (community	
WEEK 2	knowledge) LAB 01: Introduction to lab work and projects; community-engaged project idea generation; team formation and challenge identification	IoT Project Deliverable: Team formation; challenge identification
Week of Mon. 15 Jan.	studies: healthcare, manufacturing, oil and gas, utilities, smart & connected cities, transportation, mining, public safety, agriculture, filming, etc. Guest speakers: IRIS R&D, City of Hamilton, Axibo	
	LAB 02: Introduction to IoT [Sensors, WiFi, MQTT, Cloud, Node-Red]	IoT Project Deliverable: Team formation; challenge identification
WEEK 3 Week of Mon. 22 Jan.	IoT Devices: the "things" in IoT - Sensors, actuators, and smart objects - Sensor networks, including communication protocols for wireless sensor networks	
	LAB 03: Understanding coding; Bluetooth	IoT Project Deliverable: Team formation; challenge identification
WEEK 4 Week of Mon. 29 Jan.	IoT Network Architecture and Design - OSI Model - Drivers: scale, security, constraints, data, legacy supports - IoT Architecture: OneM2M & IoT World Forum	
	LAB 04: Project pitches and resources needed	IoT Project Deliverable: Submit Project Challenge DRAFT

WEEK 5	IoT Network Architecture and Design	
Week of Mon. 05 Feb.	- IoT Functional Stack: Layers	
	- IoT Data Management &	
	Compute Stack: Fog, Edge, and	
	Cloud	
	LAB 05: LoRa; Addressing concerns with	IoT Project Deliverable: Addressing
	Project Challenge	concerns with Project Challenge
WEEK 6	Considerations in connecting smart	
Week of Mon. 12 Feb.	objects: range, frequency bands, power	
	consumption, topology, constrained	
	devices, constrained-node networks,	
	data range and throughput, latency and	
	determinism, overhead and payload	
	LAB 06: LoBaWAN: Addressing concerns	Int Project Deliverable: Submit Project
	with Project Challenge	Challenge FINAI
WEEK 7	Mid-term recess(es)	
Week of Mon. 19 Feb.		
WEEK 8	MID TERM in class	
Week of Mon. 26 Feb.		
	LAB 07: ZigBee; Projects	
WEEK 9	IoT Access Technologies: 802.11ah	
Week of Mon. 04 Mar.	(WiFi), LoRaWAN, NB-IoT, Bluetooth,	
	ZigBee, Z-Wave, SigFox, M2M	
		Assignment: Needs-based Project
	LAB 08: Projects	Scenarios
WEEK 10	IoT Access Technologies: 802.15.4 (LR-	
Week of Mon. 11 Mar.	WPAN), 802.15.4e (LR-WPAN for	
	industrial applications), 802.15.4g (LR-	
	WPAN for smart grid utility networks),	
	1901.2a (IPV6 support), LIE variations	Assignment: Needs based Dreigst
	LAB 09: Projects	Assignment: Needs-based Project
WFFK 11	IP as IoT Network Laver	
Week of Mon 18 Mar	- Business case	
	- Optimization	
	Application protocols for IoT	
	- Transport layer, and protocols:	
	SCADA, MQTT, CoAP	
	, , ,	
	LAB 10: Projects	
WEEK 12	Application protocols for IoT	
Week of Mon. 25 Mar.	- Transport layer, and protocols:	
	AMQP, DDS, HTTP, WebSocket	
	LAB 11: Projects; Project Presentations	Assignment: Needs-based Project
	Dry run	Scenarios FINAL

Week 13 Week of Mon. 01 Apr.	Connecting the dots: overview of devices, networks, and protocols	
	LAB 12: PROJECT PRESENTATIONS	
Week 14	FINAL EXAM in class	
Week of Mon. 08 Apr.		
	LAB 13: PROJECT PRESENTATIONS	

3. COURSE SPECIFIC POLICIES

Students are encouraged to connect with the TA(s), IA(s), and/or instructor(s) with their queries.

All assignments are available to the students at the beginning of the course. Students are responsible to submit their assignments by the due date and time.

Mark Deduction Scheme			
Assignment Submission Delay	Percentage Deduction		
Before due date and time	No deduction		
Post due date and time, but before close of Dropbox on Avenue to Learn	-2.5%		
Within 24 hours of close of Avenue to Learn Dropbox (1 day)	-5%		
Between 24 hours and 48 hours (2 days)	-10%		
Between 48 hours and 72 hours (3 days)	-20%		
Between 72 hours and 96 hours (4 days)	-30%		
Between 96 hours and 120 hours (5 days)	-40%		
Between 120 hours and 144 hours (6 days)	-50%		

4. ASSESSMENT OF LEARNING	WEIGHT %
Assignment: Needs-based Project Scenarios	20
Weekly Labs	20
Project	20
Mid term exam	20
Final exam	20

5. LEARNING OUTCOMES

The course teaches engineering technology students to appreciate and learn about:

- 1. Internet of Things as applied in both industry and government, and across various applications, including but not limited to health care, city infrastructure, agriculture, manufacturing and standard of living,
- 2. Contemporary challenges that impact our society, and attempt to address these challenges from the lens of Internet of Things via a course project,
- 3. Inspirational IoT-based case studies, including via interaction with guest speakers,
- 4. IoT Devices, including sensors, actuators, and smart objects, and their networks and communication protocols,
- 5. IoT Network architecture and design, including comparing IoT architectures and hierarchy,
- 6. Communications criteria for connecting IoT devices, including several access technologies, including M2M, LPWAN, WiFi, Bluetooth, ZigBee, Z-Wave, SigFox, LoRaWan, and NB-IoT,
- 7. Internet Protocol (IP) as IOT Network Layer, including the need for optimization,
- 8. Application Protocols for the IOT Transport Layer, including MQTT, CoAP, AMQP, DDS, HTTP, and WebSocket,
- 9. Connecting the dots via overview of devices, networks, and protocols, and

6. COMMUNICATIONS

It is the student's responsibility to:

- Maintain current contact information with the University, including address, phone numbers, and emergency contact information.
- Use the University provided e-mail address or maintain a valid forwarding e-mail address.
- Regularly check the official University communications channels. Official University communications are considered received if sent by postal mail, by fax, or by e-mail to the student's designated primary e-mail account via their "@mcmaster.ca" alias.
- Accept that forwarded e-mails may be lost and that e-mail is considered received if sent via the student's @mcmaster.ca alias.
- Check the McMaster/Avenue email and course websites on a regular basis during the term.

7. POLICIES – COURSE OUTLINE – APPROVED ADVISORY STATEMENTS

ACADEMIC INTEGRITY

You are expected to exhibit honesty and use ethical behaviour in all aspects of the learning process. Academic credentials you earn are rooted in principles of honesty and academic integrity. It is your responsibility to understand what constitutes academic dishonesty.

Academic dishonesty is to knowingly act or fail to act in a way that results or could result in unearned academic credit or advantage. This behaviour can result in serious consequences, e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: "Grade of F assigned for academic dishonesty"), and/or suspension or expulsion from the university. For information on the various types of academic dishonesty please refer to the <u>Academic Integrity Policy</u>, located at https://secretariat.mcmaster.ca/university-policies-procedures- guidelines/

The following illustrates only three forms of academic dishonesty:

- plagiarism, e.g. the submission of work that is not one's own or for which other credit has been obtained.
- improper collaboration in group work.
- copying or using unauthorized aids in tests and examinations.

AUTHENTICITY / PLAGIARISM DETECTION

Some courses may use a web-based service (Turnitin.com) to reveal authenticity and ownership of student submitted work. For courses using such software, students will be expected to submit their work electronically either directly to Turnitin.com or via an online learning platform (e.g. A2L, etc.) using plagiarism detection (a service supported by Turnitin.com) so it can be checked for academic dishonesty.

Students who do not wish their work to be submitted through the plagiarism detection software must inform the Instructor before the assignment is due. No penalty will be assigned to a student who does not submit work to the plagiarism detection software. **All submitted work is subject to normal verification that standards of academic integrity have been upheld** (e.g., on-line search, other software, etc.). For more details about McMaster's use of Turnitin.com please go to www.mcmaster.ca/academicintegrity.

COURSES WITH AN ON-LINE ELEMENT

Some courses may use on-line elements (e.g. e-mail, Avenue to Learn (A2L), LearnLink, web pages, capa, Moodle, ThinkingCap, etc.). Students should be aware that, when they access the electronic components of a course using these elements, private information such as first and last names, user names for the McMaster e-mail accounts, and program affiliation may become apparent to all other students in the same course. The available information is dependent on the technology used. Continuation in a course that uses on-line elements will be deemed consent to this disclosure. If you have any questions or concerns about such disclosure please discuss this with the course instructor.

ONLINE PROCTORING

Some courses may use online proctoring software for tests and exams. This software may require students to turn on their video camera, present identification, monitor and record their computer activities, and/or lock/restrict their browser or other applications/software during tests or exams. This software may be required to be installed before the test/exam begins.

CONDUCT EXPECTATIONS

As a McMaster student, you have the right to experience, and the responsibility to demonstrate, respectful and dignified interactions within all of our living, learning and working communities. These expectations are described in the <u>Code of Student Rights & Responsibilities</u> (the "Code"). All students share the responsibility of maintaining a positive environment for the academic and personal growth of all McMaster community members, whether in person or online.

It is essential that students be mindful of their interactions online, as the Code remains in effect in virtual learning environments. The Code applies to any interactions that adversely affect, disrupt, or interfere with reasonable participation in University activities. Student disruptions or behaviours that interfere with university functions on online platforms (e.g. use of Avenue 2 Learn, WebEx or Zoom for delivery), will be taken very seriously and will be investigated. Outcomes may include restriction or removal of the involved students' access to these platforms.

ACADEMIC ACCOMMODATION OF STUDENTS WITH DISABILITIES

Students with disabilities who require academic accommodation must contact <u>Student Accessibility Services</u> (SAS) at 905-525-9140 ext. 28652 or <u>sas@mcmaster.ca</u> to make arrangements with a Program Coordinator. For further information, consult McMaster University's <u>Academic Accommodation of Students with Disabilities</u> policy.

PROTECTION OF PRIVACY ACT (FIPPA)

The Freedom of Information and Protection of Privacy Act (FIPPA) applies to universities. Instructors should take care to protect student names, student numbers, grades and all other personal information at all times. For example, the submission and return of assignments and the posting of grades must be done in a manner that ensures confidentiality - see http://www.mcmaster.ca/univsec/fippa/fippa.cfm

REQUESTS FOR RELIEF FOR MISSED ACADEMIC TERM WORK

<u>McMaster Student Absence Form (MSAF)</u>: In the event of an absence for medical or other reasons, students should review and follow the Academic Regulation in the Undergraduate Calendar "Requests for Relief for Missed Academic Term Work".

ACADEMIC ACCOMMODATION FOR RELIGIOUS, INDIGENOUS OR SPIRITUAL OBSERVANCES (RISO)

Students requiring academic accommodation based on religious, indigenous or spiritual observances should follow the procedures set out in the <u>RISO</u> policy. Students should submit their request to their Faculty Office *normally within 10 working days* of the beginning of term in which they anticipate a need for accommodation <u>or</u> to the Registrar's Office prior to their examinations. Students should also contact their instructors as soon as possible to make alternative arrangements for classes, assignments, and tests.

COPYRIGHT AND RECORDING

Students are advised that lectures, demonstrations, performances, and any other course material provided by an instructor include copyright protected works. The Copyright Act and copyright law protect every original literary, dramatic, musical and artistic work, **including lectures** by University instructors

The recording of lectures, tutorials, or other methods of instruction may occur during a course. Recording may be done by either the instructor for the purpose of authorized distribution, or by a student for the purpose of personal study. Students should be aware that their voice and/or image may be recorded by others during the class. Please speak with the instructor if this is a concern for you.

EXTREME CIRCUMSTANCES

The University reserves the right to change the dates and deadlines for any or all courses in extreme circumstances (e.g., severe weather, labour disruptions, etc.). Changes will be communicated through regular McMaster communication channels, such as McMaster Daily News, A2L and/or McMaster email.

REQUESTS FOR RELIEF FOR MISSED ACADEMIC TERM WORK – MSAF (ASSIGNMENTS, MID-TERMS, ETC)

The McMaster Student Absence Form is a self reporting tool for **Undergraduate Students** to report absences that last up to 5 days and provides the ability to request accommodation for any missed academic work. Please note, this tool <u>cannot</u> be used during any final examination period.

You may submit a maximum of 1 Academic Work Missed requests per term. It is YOUR responsibility to follow up with your Instructor immediately regarding the nature of the accommodation.

If you are absent more than 5 days or exceed 1 request per term you MUST visit your Associate Dean's Office (Faculty Office). You may be required to provide supporting documentation.

This form should be filled out immediately when you are about to return to class after your absence. <u>http://www.mcmaster.ca/msaf/</u>

ANTI-DISCRIMINATION

The Faculty of Engineering is concerned with ensuring an environment that is free of all discrimination. If there is a problem, individuals are reminded that they should contact the Department Chair, the Sexual Harassment Officer or the Human Rights Consultant, as soon as possible. https://www.mcmaster.ca/policy/General/HR/Discrimination_and_Harassment.pdf

EXTREME CIRCUMSTANCES

The University reserves the right to change the dates and deadlines for any or all courses in extreme circumstances (e.g., severe weather, labour disruptions, etc.). Changes will be communicated through regular McMaster communication channels, such as McMaster Daily News, A2L and/or McMaster email.

8. MCMASTER GRADING SCALE		
Grade	Equivalent Grade Point	Equivalent Percentages
A+	12	90-100
A	11	85-89
A-	10	80-84
B+	9	77-79
В	8	73-76
В-	7	70-72
C+	6	67-69
С	5	63-66
C-	4	60-62
D+	3	57-59
D	2	53-56
D-	1	50-52
F	0	0-49

SMRTTECH 4ID3 SCHEDULE OF LABS

Figure: 01 A Typical Internet of Things Setup with Focus on varying Access Layer Technologies; communication enabled via MQTT Application Protocol

Lab #	Lab Title	Purpose/Objective	Learning Outcome
WEEK 1	Introduction	An understanding of how labs and projects work and are related,	Students learn how to research for and draft a
Lab 01	to Lab Work	along with initiating community-based research for project	community-based project challenge using a theme-
Week of	and Projects	challenge identification, and forming project teams.	based approach to narrow down to a proof-of-concept
Mon. 08 Jan.			project. Additionally, students form their project teams.
WEEK 2	Introduction	A practice-based understanding on the "things" of the Internet of	Students learn appreciation for Node-Red, Mosquitto,
Lab 02	to IoT	Things, and the "Internet" of the Internet of Things, including	MQTT, various common sensors, ESP 8266
Week of		temperature, pressure, humidity, and light intensity sensors,	microcontroller, Arduino IDE, and its specific uses for a
Mon. 15 Jan.	WiFi	connected to a microcontroller (with Publication-Subscription	typical IoT Setup (Figure 01). Additionally, students
		client), communicating over 802.11ah WiFi to an MQTT server on	learn to install programs on their computers and smart
		cloud, corresponding with Node-Red application, showcasing	phones.
		outcome in a Node-Red user interface.	
			Students learn about WiFi as an Access Technology, and
			appreciate the criteria for choosing WiFi for a given
			application.
WEEK 3	Understanding	Thorough understanding of the code in Lab 01 including variations	Students lean, line-by-line, explanation of a generic
Lab 03	coding	that may follow	code, enabling them to edit code as needed for lab
Week of			and/or project work.
Mon. 22 Jan.	Bluetooth	A practice-based understanding on the "things" of the Internet of	
		Things, and the "Internet" of the Internet of Things, including	Students learn about Bluetooth as an Access
		temperature, pressure, humidity, and light intensity sensors,	Technology, and appreciate the criteria for choosing
		connected to a microcontroller (with Publication-Subscription	Bluetooth for a given application.
		client), communicating over Bluetooth to an MQ11 server on	
		cloud, corresponding with Node-Red application, showcasing	
	Droiset	Disconte in a Node-Red user interface.	Chudoute leave to witch their project property
VVEEK 4	Project	Project pitches from each student team	students learn to pitch their project proposals,
Lab 04 Wook of		A collective identification of technical resources needed: hill of	domonstratable procentation
Mon 29 Jan	needed	materials: hudget	demonstratable presentation.
W/FFK 5	LoBa	A practice-based understanding on the "things" of the Internet of	Students learn about LoBa as an Access Technology
Lab 05	Lona	Things and the "Internet" of the Internet of Things including	and appreciate the criteria for choosing LoBa for a
Week of	Addressing	temperature, pressure, humidity, and light intensity sensors.	given application.
Mon. 05 Feb.	concerns with	connected to a microcontroller (with Publication-Subscription	
	Project	client), communicating over LoRa to an MOTT server on cloud.	Students learn to pitch their project proposals.
	Challenge	corresponding with Node-Red application, showcasing outcome in	including identifying project requirements/needs for a
	Ŭ	a Node-Red user interface.	demonstratable presentation.
		Finalizing technical resources needed; bill of materials; budget	

WEEK 6	LoRaWAN	A practice-based understanding on the "things" of the Internet of	Students learn about LoRaWAN as an Access
Lab 06		Things, and the "Internet" of the Internet of Things, including	Technology, and appreciate the criteria for choosing
Week of	Addressing	temperature, pressure, humidity, and light intensity sensors,	LoRaWAN for a given application.
Mon. 12 Feb.	concerns with	connected to a microcontroller (with Publication-Subscription	
	Project	client), communicating over LoRaWAN to an MQTT server on	Students learn to pitch their project proposals,
	Challenge	cloud, corresponding with Node-Red application, showcasing	including identifying project requirements/needs for a
	_	outcome in a Node-Red user interface.	demonstratable presentation.
		Finalizing technical resources needed; bill of materials; budget	
WEEK 7			
Week of	Mid-term recess	s(es)	
Mon. 19 Feb.			
WEEK 8	ZigBee	A practice-based understanding on the "things" of the Internet of	Students learn about ZigBee as an Access Technology,
Lab 07		Things, and the "Internet" of the Internet of Things, including	and appreciate the criteria for choosing ZigBee for a
Week of	Projects	temperature, pressure, humidity, and light intensity sensors,	given application.
Mon. 26 Feb.		connected to a microcontroller (with Publication-Subscription	
		client), communicating over ZigBee to an MQTT server on cloud,	Students initiate project work in labs, learning real
		corresponding with Node-Red application, showcasing outcome in	world problems of troubleshooting in IoT-based
		a Node-Red user interface.	projects.
		Begin project work in labs	
WEEK 9	Projects	Continuing project work in labs	Students continue project work in labs, learning real
Lab 08		Troubleshooting project work in labs	world problems of troubleshooting in IoT-based
Week of		Catering to individual project needs	projects, including troubleshooting specifics based on
Mon. 04 Mar.			chosen project.
WEEK 10	Projects	Continuing project work in labs	Students continue project work in labs, learning real
Lab 09	-	Troubleshooting project work in labs	world problems of troubleshooting in IoT-based
Week of		Catering to individual project needs	projects, including troubleshooting specifics based on
Mon. 11 Mar.			chosen project.
WEEK 11	Projects	Continuing project work in labs	Students continue project work in labs, learning real
Lab 10	-	Troubleshooting project work in labs	world problems of troubleshooting in IoT-based
Week of		Catering to individual project needs	projects, including troubleshooting specifics based on
Mon. 18 Mar.			chosen project.
WEEK 12	Projects	Continuing project work in labs	Students continue project work in labs, learning real
Lab 11	-	Troubleshooting project work in labs	world problems of troubleshooting in IoT-based
Week of	Project	Catering to individual project needs	projects, including troubleshooting specifics based on
Mon. 25 Mar.	Presentations	Final Project Presentation Dry run	chosen project.
	Dry run		

			Students learn to rehearse for final presentations,
			including showcasing accomplished work, and
			acknowledging need for continuing work.
Week 13	Project	Final Project Presentations	Students learn to present high level objectives of the
Lab 12	Presentations		project, starting with community pain points, and
Week of			proposed proof-of-concept; presenting work
Mon. 03 Apr.			accomplished as part of proof-of-concept; demo of
			functional project; articulating future work needed.
Week 14	Project	Final Project Presentations	Students learn to present high level objectives of the
Lab 13	Presentations		project, starting with community pain points, and
Week of			proposed proof-of-concept; presenting work
Mon. 08 Apr.			accomplished as part of proof-of-concept; demo of
			functional project; articulating future work needed.